源代码链接:https://github.com/beyondfengyu/SnowFlake
一、算法原理
总长度64位,从低位到高位依次划分为:
1)0~11位(共12bit)表示序列号,最大值2^12=4096,意味着在一个时间单位(我们用毫秒,当然你也可以用秒)内最多可以生成4096个ID;
2)12~21位(共10bit)表示机器id,最大值2^10=1024,意味着可以在1024台机器上部署我们的算法,当然了,像我所在的团队,一个应用能有4台机器就是“富农”了,6台都能成“地主”了,所以丝毫不用担心。
3)22~62位(共41bit)表示时间戳,最大值2^41=2 199 023 255 552(单位:ms),意味着在这么多时间内我们可以肆意妄为地制造ID。是多久呢?一年按365天算,2^41 / 1000 / 3600 / 24 / 365 ≈ 69.7(年)。系统运行之前我们设置一个起始时间,例如“2019-2-21 00:00:00”,然后从此时开始算,差不多能用到2088年。
4) 63位(共1bit)最高位设置为0,不用,说是二进制里面最高位是1的是负数,我们用0表示正数就好了。
二、算法源代码
SnowFlake算法用来生成64位的ID,刚好可以用long整型存储,能够用于分布式系统中生产唯一的ID, 并且生成的ID有大致的顺序。 在这次实现中,生成的64位ID可以分成5个部分:
0 - 41位时间戳 - 5位数据中心标识 - 5位机器标识 - 12位序列号
5位数据中心标识跟5位机器标识这样的分配仅仅是当前实现中分配的,如果业务有其实的需要,可以按其它的分配比例分配,如10位机器标识,不需要数据中心标识。
/**
* twitter的snowflake算法 -- java实现
*
* @author beyond
* @date 2016/11/26
*/
public class SnowFlake {
/**
* 起始的时间戳
*/
private final static long START_STMP = 1480166465631L;
/**
* 每一部分占用的位数
*/
private final static long SEQUENCE_BIT = 12; //序列号占用的位数
private final static long MACHINE_BIT = 5; //机器标识占用的位数
private final static long DATACENTER_BIT = 5;//数据中心占用的位数
/**
* 每一部分的最大值
*/
private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
/**
* 每一部分向左的位移
*/
private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;
private long datacenterId; //数据中心
private long machineId; //机器标识
private long sequence = 0L; //序列号
private long lastStmp = -1L;//上一次时间戳
public SnowFlake(long datacenterId, long machineId) {
if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
}
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
}
this.datacenterId = datacenterId;
this.machineId = machineId;
}
/**
* 产生下一个ID
*
* @return
*/
public synchronized long nextId() {
long currStmp = getNewstmp();
if (currStmp < lastStmp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}
if (currStmp == lastStmp) {
//相同毫秒内,序列号自增
sequence = (sequence + 1) & MAX_SEQUENCE;
//同一毫秒的序列数已经达到最大
if (sequence == 0L) {
currStmp = getNextMill();
}
} else {
//不同毫秒内,序列号置为0
sequence = 0L;
}
lastStmp = currStmp;
return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
| datacenterId << DATACENTER_LEFT //数据中心部分
| machineId << MACHINE_LEFT //机器标识部分
| sequence; //序列号部分
}
private long getNextMill() {
long mill = getNewstmp();
while (mill <= lastStmp) {
mill = getNewstmp();
}
return mill;
}
private long getNewstmp() {
return System.currentTimeMillis();
}
public static void main(String[] args) {
SnowFlake snowFlake = new SnowFlake(2, 3);
for (int i = 0; i < (1 << 12); i++) {
System.out.println(snowFlake.nextId());
}
}
}