参考链接:
1. 机器学习研习院:https://mp.weixin.qq.com/s/hD8qMr2w4GNSRWopbuCS9Q
官方文档:
1.https://github.com/automl/auto-sklearn
2.https://automl.github.io/auto-sklearn/master/
一、AutoMl与Auto-Sklearn
自动化机器学习AutoML 是机器学习中一个相对较新的领域,它主要将机器学习中所有耗时过程自动化,如数据预处理、最佳算法选择、超参数调整等,这样可节约大量时间在建立机器学习模型过程中。
Auto-Sklearn是一个开源库,用于在 Python 中执行 AutoML。它利用流行的 Scikit-Learn 机器学习库进行数据转换和机器学习算法。
Auto-Sklearn 的好处在于,除了发现为数据集执行的数据预处理和模型之外,它还能够从在类似数据集上表现良好的模型中学习,并能够自动创建性能最佳的集合作为优化过程的一部分发现的模型。
Auto-Sklearn 是改进了一般的 AutoML 方法,自动机器学习框架采用贝叶斯超参数优化方法,有效地发现给定数据集的性能最佳的模型管道。